- PHILOSOPHICAL TRANSACTIONS.

L On the Analytical Theory of the Attraction of Solids bounded by surfaces of a hypo-
thetical Class including the Ellipsoid. By W. F. Donkin, M. 4., F.R.S., F.R.A.S.,
Savilian Professor of Astronomy in the University of Oxford.

Received September 2,—Read December 8, 1859.

Tue following investigation is the result of an attempt to simplify the analytical treat-
ment of the problem of the Attraction of Ellipsoids. The application to this particular
case, of certain known propositions relating to closed surfaces in general, showed that
the principal theorems could easily be deduced without taking account of any other
properties of the ellipsoid than those expressed by two differential equations, of which
the truth is evident on inspection. In fact if we take the equation
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P Y .
aQ+h+bQ+/L+c°‘+h"k’

we see at once that the expression on the left side, considered as a function of #, y, 2, 4,
satisfies the two partial differential equations
du  dw | d*u

1 1 1
d?+d_y%’+%§=2<a2+h+bﬂ+h+c2+h>
du\? = (du\® [du\?  du '
(' (5 (4o
and these equations express all that we require to know about the ellipsoid, except the
fact that the surface is capable of being extended to infinity in every direction by the

variation of A, without ceasing to be.closed. But it appeared also that the success of
the method depended only on the circumstance that the right-hand member of the first

. . du . . :
equation, and the coefficient of d—z in the second, are constants independent of . It was
therefore possible to generalize the process by taking indeterminate functions of A for

. di
these two constants. As, however, the coefficient of d—: could always be reduced to a

MDCCCLX. B

The Royal Society is collaborating with JSTOR to digitize, preserve, and extend access to éﬁ%}ﬁ

Philosophical Transactions of the Royal Society of London. IIK®RY
WWWw.jstor.org



2 , PROFESSOR DONKIN ON THE ATTRACTION OF SOLIDS BOUNDED

constant independent of 4, by taking a function of 4 as a parameter instead of %, we
may suppose, without loss of generality, that this reduction has been effected.

Mr. CavLEY has shown*, in the latest publication on this subject which I have met
with, that if zwo of the principal theorems of attraction (in the case of the ellipsoid) be
given, the rest follow very simply, and are common to all surfaces of which those two
can be predicatedt. But the demonstration of the two assumed theorems constitutes
the most essential part of the analytical problem, and it is my present object to show
that they, and the others connected with them, are implied in the two differential equa-
tions above written.

1. Suppose the equation

¥, 9,2,0)=0 . . . . . . . . . . . (L)
represents closed surfaces for all values of the parameter 4 within certain limits; and let
the surface corresponding to any particular value 4, of 4, be called * the surface 4,.”
With reference to these surfaces let the limits of integrals be indicated thus: [ ] signifies
that an integral enclosed between the brackets, if it consist of superficial elements, is
extended over the surface 4; if of solid elements, through the whole space within that

surface. In either case let []ZT stand as an abbreviation for [ )% —[ .

(@@ (@)

be, for shortness, denoted by Q, (whatever v may be).

Let us put also
d\* [(d\* [d \
(i) + (@) + (i) =

and let the element of surface be called do.
By means of (1.) we may suppose ¢ expressed as a function of &, 4, z.  On this sup-

position we have
BE:
= () + () + (@) 1
Let the sign of the right-hand member of this equation be so taken that Qudé shall be
positive or negative according as the surface (44 dd) is without or within the surface 4.
Since Q;’dd is the normal thickness at any point of the infinitesimal shell included
between the two surfaces § and -4 dd, the latter surface must be either wholly within
or wholly without the former, unless Q, become infinite at some point of the surface ¢,
a supposition which it is not necessary to exclude, but which I suppose to be excluded
for the sake of simplicity.
2. The preliminary propositions to be demonstrated in this article are not new. I
am not certain to whom they are originally due; they were, however, employed by Pro-

* Be¢ also Camb. Math. Journal, vol. iii. p. 75 for the year 1842.—Note added June 25, 1860.
+ Note on the Theory of Attraction (Quarterly Journal of Mathematics, vol. ii. p. 838). The two theorems
are those marked V. and V1. in this paper.
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fessor 'W. TroMsoN in an early volume of the Cambridge Mathematical Journal (to
which I have not at present the opportunity of referring) in some form equivalent to (if
not identical with) that in which they are here given. They depend on the most
elementary principles, and ought to be so well known as to make a demonstration need-
less; however, I give one for the sake of completeness. Retaining the suppositions of
the last article, we have, if P be any function of «, 7, 2,

Uﬂ dxdydj U-P-ﬁd]

(by integrating the expression on the left with respect to #, and applying a well-known
transformation to the double integral).
Let then w be any function of @, 9, z, and put
It du d du df du
p=ug—0o, 9q=u @—9@, r=u =0
then

—|— +d =uD*— 9D2u,

and if the two members of the last equation be multiplied by dadydz, and integrated
through the space within the surface ¢,, the result on the left is

l:jﬂQg de+gdy+7ﬂdz/ ]
or, if p, ¢, r be replaced by their values, it is

r o T 0 sdud)  dudd | du db o1

Lf“Qed”] _I_,YQ—(, &l ay dy Tz dz)da:] ;
but in the last of these integrals 4 has the same value ¢, throughout the integration, and
may therefore be put outside the integral sign; and the integral which it multiplies is
then evidently equivalent to the triple integral [ ({{D%.dadydz]", since it would be

obtained by one integration of each of the three terms of the latter. Hence we have,
finally,

[fuQudo =0, {{{ Du.dwdydz+[ ([ (uD*0— 6D*w)dadydz], . . . . . (2.)

and, subtracting this from the similar equation referring to another value 4, of ¢,

[ fuQds =0 §{§D%u.dadydz]>— 0 {{{D*w. dedydz ) +[ §{§(uD*0— D) dwdydz]y, . (3.)
which last might have been obtained at once by taking the triple integrals through the
space included between the surfaces 4, 6, It is of course necessary for the validity of
each equation, that the functions under the integral signs should not become infinite at
any point within the limits of the integrations.

3. Let the equation

0,

flo,y, 2, B)=0 . . . . . . . . . . . . (4)
represent closed surfaces for all values, within certain limits, of the parameters A, £.

Let the surface corresponding to a particular pair of values 4, £, be called  the surface
B2



4 ~ PROFESSOR DONKIN ON THE ATTRACTION OF SOLIDS BOUNDED

h, k;” and let the space (or solid) included between the surfaces (%, &), (hy, £) be called
 the shell (2 lc) ", similarly, let that included between the surfaces (k, &,), (k &) be
1

called “the shell <h l]i )* ” Let it also be supposed that each of the surfaces (, £+ dk),

(h-+dh, k), is either wholly within or wholly without the surface (%, k).
By virtue of equation (4.) either parameter may be considered a function of «, y, 2z, and
the other parameter. Let the function on the left of (4.) be such that when % is con-

sidered as a function of @, 9, 2, k, the two following partial differential equations are

satisfied :—
a2k . d*%  d%k
Tt gt =e(h)

dk\® | (dk\? | (dk ’
(@) +(5) + (&) +ia=0 ]
where ¢(h) is a function of % not containing %, and # is a constant, independent of 4 and £.

The second of these equations may be put in another form thus: considering /4 as
implicitly a function of #, ¥, #, &, we have

dk | dk dh
dx +dlz aT“‘O &e.

&)+ ()+/””‘> =(@) ((&)+ @) +(z)):

or (extracting the root and employing the notation explained in art. 1)

Qk— d‘—k Qh'#‘ ’

dh

(5.)

whence

hence the second of equations (5.), which is
dk

may be changed into Q,.Q,=n. In this form it will be actually employed, so that the
two equations may be written as follows :—

D%k =g(h)| .
O | e (6)

* 1 borrow this notation, with a slight alteration, from Mr. CAYLEY.

t The negative sign must be taken for the following reason : * is the ratio of corresponding variations

dh
of &, h, when the surface passes through a given point (z, y, #) ; now suppose that an increase of % alone, or
of % alone, would cause a displacement of the surface, relatively to that point, of the same kind ; 7. e. that
the point would be inside the altered surface in both cases, or outside in both cases; then Qu, Qx have the
same sign (art. 1). But on this supposition, if % and % vary together so that the surface continues to pass
through the point (#, y, 2), it is plain that % must increase if % decrease, and wice versd, so that ;%r is
negative. Similarly, if Qs, Qx have opposite signs, %‘; is positive. The equation in the text is therefore
h
always true.
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4. Now let the general equation (2.), art. 2, be applied to the case of the surface
considered in the last article, £ being taken for the parameter 4, so that D* is D*%, and
is =@(h); also let the arbitrary function « be put =1, so that D*»=0. Then, observing
the second of equations (6.), we obtain from (2.),

n[ %:lk=<p(k)u gdxdydz]k.

Let the volume enclosed by the surface (, £) be represented by V. Then, since the

normal thickness at any point of the shell (Z-l-dk, lc) is %h—,, the above equation is équi-

valent to

av

from which we obtain by integration, putting for shortness siS@h)d":\L(h),
V=Fk). ), . . . . . . . . . ... (1)

where F(£) is an unknown function of %, independent of .
But if, instead of putting v =1, we suppose « to be the potential, at the point (, ¢, 3),
of a given mass M exterior to the surface (%, k), then we have (since D% is again =0)

"[ %k] =p(h). [ 5 5 fudxdydz]";

and if V be put for the potential on M of a (homogeneous) solid bounded by the surface
(h, k), this equation is equivalent to
av

and therefore, as before,
V=F&). k), . . . . . oo oo (8)
where +J(h) is the same as before, but F(%) is a new unknown function of %, which will

also involve the given quantities which define M.
From (7.) and (8.) we have

which equation expresses
TueoREM L. The potential, on a given external mass, of a homogeneous solid bounded
by the surface (h, k), varies as the mass of the solid, if h vary while k remains constant.
5. If we put V(h, k) for the volume, and V(%, k) for the potential, denoted above
simply by 7 and V, we obtain from equations (7.) and (8.) the following :—

Viho, kg) =V kg, ky) __ Viho, ko) = Vihg, ky)
V(h]’ kQ)—V(hl’ kl) V(hv ka)— V(hll kl)

which expresses
TurorEM II. The potentials, on a given external mass, of the homogeneous shells

(h2, i?), (h,, 112>, are proportional to the masses of the shells.
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When the thickness of the shells is infinitesimal, this proposition may be enunciated as
Turorem IIL. The potential, upon @ given external mass, of the homogeneous shell

(h k+4dk

'k ), varies as the mass of the shell, if h vary while k remains constant.

6. The above conclusions were deduced from equation (2.), art. 2. Let us now take
equation (3.) and apply it in a similar manner, taking for the parameter 4, no longer %,
but an indeterminate function of /4 (not containing %), say

o0=f(h)-
This gives, without ambiguity of sign,
Q,=f"(7)Q,
(for by the convention made, art. 1, as to the signs of Q,, &c., Q, and Q, must have the
same sign or not, according as f'(h) is positive or negative).
Hence, writing the left-hand side of (3.) in full, and introducing the second of the
conditions (6.), we have

I hy
97]"(lz2), udc] —nf'(h, )[j ud‘r] l—yj’j'uD?ﬂh).dmdydz—l -+ (terms involving D).
L _in,
Now let u be the potential of a given mass M exterior to both the surfaces (%,, ), (ho, &),

. . . . udo |t . . dv
so that D* is =0 throughout the integrations. The integral IVQY—Q—;:I is evidently —
Lo :
if V be the potential on M of a homogeneous solid (density =1) bounded by the surface
(h, k); and by equation (8.), art. 4, - _F’(/ﬁ). Y(h).

The above equation thus becomes
nF(E){f (ho)d(ho) = f (R 7o)} =[ (JuD?A(R). daedydz]e.
The function f{%) has been so far arbltrary. Let us now determine it in such a manner
that 7'(h)J4(h)= a constant independent of /4 and % ; or
dh
F(h)=A+B (‘)

(A, B being two such arbitrary constants). Then the left-hand side of the equation
vanishes; therefore the right-hand side vanishes also, or

[uD (). dedydz =0

but since % is the potential of an arbitrary mass, this cannot be unless D*f(h)=0. We

may therefore (introducing the value of +J(%), art. 4, and including the arbitrary con-
stants under the integral signs) enunciate

Turorem IV. If f(h) be defined by the equation

f (h) =§ dh. E—if?h(d)h’
then f(h) satisfies the equation
Df(h)=0.
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This result may be verified by actual differentiation, as will be shown afterwards
(art. 12).

7. Resuming the equation (8.), art. 2, and supposing that 4 is the function f(%)
determined in the last article, so that D2f(h)=0, let us put u=1; then the equation
becomes

do | do "
f’(hz)[. gk] —f’(h,)[ Q—k] =0;
if this be multiplied by dZ, it expresses the following proposition :—

If the homogeneous infinitesimal shell (h, 11§+dk> have the density f'(h), the mass of

the shell is independent of h.
It follows that the potential of such a shell, on a given inferior mass, vanishes when
h has the value which makes the surface (%, £) extend to infinity in all directions; for

the mass of the shell is finite, but every part of it is infinitely distant from the
attracted mass.

8. Instead of putting w=1, as in the last article, let us now take for » the potential
of a given mass M, placed anywhere. Then if ¢ be the density, at the point (#, ¥, 2), of
the matter composing M, we shall have

Du=—4=p.
Let the surface (A, £) be within the surface (%, £), and let M, be all that part of M

which is within the former surface, and M, all that part which is within the latter (so
that M, includes M,).

Also let f(A) be still taken for 4, in equation (8.), art. 2; then D=0, and the last
term on the right of that equation becomes

Aa\Nef (h)dudydz].
Now the whole mass included between the two surfaces is M,—M,; hence the above

integral is equal to
47(M,— M, )f(h),

in which Ais put for the parameter of some surface (%, ), which lies between (%,, £) and
(hy k), and cuts the mass M,—M,. If the mass M be concentrated at a point between
the two surfaces, then % is the parameter of the surface (A, k) which passes through that
point.

In the general case, however, equation (3.) becomes

" wdo e y ™ (Cude " E
7%7”’(7@2)[ @;] —nf’ (m)| f @7] = — 4aM, £(hy)+ 45 M, f(h,)+4x(M— M) A(h).
Let V,, V, be put for the potentials on M of the two infinitesimal shells(k,, k+dk>,

k
(hz, Z+dk>, with densities f'(%,), f"(h,) respectively ; then this equation, multiplied by

dk, gives
Vo V=2 (= M, f() A+ M, R+ (M= M) AR R, . . . . . (9.)
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Suppose now that the mass M is unity, and is concentrated at a point between the two
surfaces, then M,=0, M,=1, and (9.) becomes
4ndk
w ()= (R),
where / is the parameter of the surface which passes through the point.
Let the value of A which makes the surface (%, £) extend to infinity be denoted by /.. ;
then putting s,=%., we have V,=0 (art. 7), and the last equation gives
Andk
Vi=— (f(h.)—f (1)
and again, if this value of V, be substituted, the same equation gives
4mdk
V== (flha) —f ()
here V, is the potential of an infinitesimal shell on an eaterior point, and V, on an infe-
rior point. These expressions suppose that the densities of the shells are f'(h,), f'(h,);
hence, changing the densities to unity, and A, to A, in the second, we obtain the follow-
ing results:—

The potential of the infinitesimal shell (k,, §+dk> (density =1) upon an exterior

‘72"‘71::

point is
4wdk

nfT(hy) (f(kw) '—f(h)) ;
and upon an ¢nterior point, it is
4Andk

af iy ()= (1)

Now f'(h) (art. 6) is \FI?—; hence the above expressions become, for an exterior point,

4m = dh
—n—dlca.}/(h,)ﬁm, ... (B

and for an interior point,
4 w dh
—nd/cm,b(h,)j;lm. e B

9. In the expression (E.), the value of % at the lower limit of the integral is the para-
meter of the surface which passes through the attracted point, and the potential has
therefore the same value at all points of that surface; hence

TuroreM V. The extarnal equipotential surfaces of the homogeneous infinitesimal shell

(h,, ,i—'—dk) are the surfaces (h, k), in which h is arbitrary and k invariable.

The expression (I.) is independent of the position of the (interior) attracted point;
hence

Turorem VI. The homogeneous infinitesimal shell <h,, §+dk> exercises no force on an

interior mass. It follows evidently that the homogeneous finite shell (k,, Z”) possesses

the same property. l
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10. The preceding articles contain all that is essential. But it may be as well to
deduce the expression for the potential, on an exterior point, of the finite homogeneous

shell (k fcﬁ').

Let &, 7, { be the coordinates of the attracted point. The expression (E.), art. 8, is
a function of A, and through % a function of Z; for 4, at the lower limit of the integral,
is a function of &, », {, k, determined by the equation (art. 3)

£g 0, % b B)=0. . . . . . . . . . (10)

(T assume, for simplicity, that %, is independent of £.) We have then to integrate (E.)
with respect to %, from %' to £”. Now putting F(%) for the integral in (E.), we have

VF(h)dk=kF(h)—EF'(h)dh ;
and, between the limits &', #”, this gives
(VFR)Ak=E"F(h")—EF(R )=y k¥ (h)dh ;
where A", I' are the values of k corresponding to %", X, and given by the relation

£(¢, n, 4, h, £)=0. The actual value of F(h) is j' ”“\%—), and therefore F'(h)=— g7
h .
hence the required potential is ,

ar to dh g (e dh | (R
ERL] W oR Mo I ol

where %, in the last integral, is the function of /4 determined by the equation (10.).
11. To verify this in the case of the ellipsoid, we have

(F)

2 2

A Yy o4 ..
a9+h+b2+h+c9+h’"k’

here D*(=2 (agih—l—bgir h+cgiﬁ> =o¢(h), and 'QH—ZL%: 0, whence n=4; therefore

Liomar

Y= = (@) R R)*.
Also b, = . Let us take ¥'=0, ¥"=1, »,=0, so that the formula (P.) will give the
potential, on an external point (£, #, £), of the homogeneous solid ellipsoid

2 2 22
atpta=l.
Then (%,)==abc; and %, k being now connected by the equation

EQ nQ 2
ZrTEtEa=k

we have A'= oo, and %"= the positive root of this equation when £=1. The expression
(P.) then becomes

© EQ .n‘l CQ
mbcg (Frtrmtam— )
W ((a2+h)(bg+h)(ce+ﬁ))‘% ’
which is the well-known value of the potential.

* The arbitrary constant, which might be introduced, would disappear in the result.
MDCCCLX. C
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12. T shall conclude with an independent demonstration of the Theorem IV. art. 6.
-Considering % as a function of #, y, 2, &, by virtue of the equation f(z, v, 2, A, £)=0,

we have
Df(h)=f"(n)Qi+f"(R)Dh
(f(%) being any function of %, and the notation being that explained in art. 1).
Hence the condition of the possibility of satisfying the equation D*f(2)=0, is that
2
%2@ be expressible as a function of 4; if this be the case, f(%) will be determined by the
h

equation %’((}%) =— %2-2/3 We have then to show that this condition will be fulfilled if the
h

function f(, ¥, 2, &, £) be such that
Dk=p(h), Qi+nar=0.
It was proved in art. 3 that the latter of these equations gives

Qh- Qlc=n7
and also that

dk
Qk= _‘E Q;, 5
from which we obtain

dk y ar\ ! -
1= —ntk, i,:—n(%) S

Now suppose % expressed as a function of , g, 2, &; then considering % implicitly a
function of , y, 2, &, we have, by two differentiations with respect to x,
dk . dk dh . .
O:g&—i—% . % . . . . . . « . . . . . . . . (1 Z)
a*k 2k dh , %k (dR\? | dk d%h
O=W+ZM'%+W<%> ah T

Let the value of g—z derived from (12.) be introduced in the last equation, and the

similar results be written with respect to y and z; then we obtain by addition,
dk\~ (A% dk &k | dk .
0=D%-—2<d~h> 2(51—%%)4- LIS V0 N CE )

(using 3 to denote the sum of analogous expressions with respect to the three variables).
Now in the first of equations (11.), namely,

AN ak\? dk\ 2 dk
() +(5) +(z) ==
k is supposed to be expressed as a function of , 9, z, &, and the equation is therefore
identical, for otherwise it would establish a relation between a, Y, 2, h, without .
Hence we may differentiate each side with respect to 4 ; this gives
' dk d*k d%k
o3(L 22N %k
22 <dx a’/wlw) 7

dk d*k
=Q7 o= (by (11.));
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hence the second and third terms of (13.) destroy one another; also D*4=¢(%), and

dk n
h=TQ by (11.); thus (13.) becomes, finally,

D2i
o(h)—n —6?:=O, or - Qg (h)

It follows that the equation D*f(k) will be satisfied if f(£) be determined by the
equation

=00

fy=fan.

which is the theorem in question. This demonstration might have been given at the
beginning of the investigation, and the theorem might have been made the foundation
of the whole. But as there is nothing on the face of the assumed differential equations
(5.), art. 3, to suggest the possibility of satisfying the condition D?f(£)=0, the whole
process would then have acquired the character of a verification, rather than of a demon-
stration following the natural order of discovery, in which latter form I wished it to
appear.

that is, if



